Bringing Probabilistic Planning to Clinic

Eliana Vásquez Osorio, Andrew Green, Marcel van Herk, **Ian Hinder**

Radiotherapy

- Treating cancer using radiation.
- Radiation kills cells by damaging their DNA.

Radiotherapy

- Treating cancer using radiation.
- Radiation kills cells by damaging their DNA.

Radiation Therapy Treatment Planning

Aim: deliver a very high dose of radiation to a tumor (or target, O) whilst trying to spare the surrounding healthy tissues

Radiation Therapy Treatment Planning

Aim: deliver a very high dose of radiation to a tumor (or target, O) whilst trying to spare the surrounding healthy tissues

But... there are uncertainties in the location/shape of the target and healthy tissues.

Radiation Therapy Treatment Planning

Aim: deliver a very high dose of radiation to a tumor (or target, O) whilst trying to spare the surrounding healthy tissues

But... there are uncertainties in the location/shape of the target and healthy tissues.

Classic approach: extend target volume with **margins** (planning target volume, PTV).

Why margins are not good enough?

My top 5:

- Ambiguous when extended volume overlaps healthy tissues.
- "One margin fits them all"
- All errors are treated equally important → all elements within extended volume are treated as tumor.
- Not suitable for protontherapy*

What can we do?

 Let the optimizer choose the best expansion depending on the uncertainties and the anatomy → Probabilistic Treatment Planning

^{*} shift-invariance cannot be assumed, i.e., dose distribution changes when anatomy changes → range uncertainties.

Probabilistic treatment planning (PTP)

Optimization takes into account uncertainties (starting with set-up uncertainties).

You ask the optimizer certain value with a given confidence level
 e.g. minimum dose = 10Gy, with a 90% confidence!

Probabilistic treatment planning (PTP)

In general terms:

- Error distributions should be given directly to the optimiser
- The optimisation cycle includes several runs to calculate statistics (e.g. 90% confidence!)
 - → one run used to take a couple of hours, but in RayStation it is in the order of seconds/minutes

Phys. Med. Biol. 58 (2013) 3563-3580

doi:10.1088/0031-9155/58/11/3563

Probabilistic objective functions for margin-less IMRT planning

Román Bohoslavsky, Marnix G Witte, Tomas M Janssen and Marcel van Herk

Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

E-mail: r.bohoslavsky@nki.nl

Received 10 December 2012, in final form 19 March 2013 Published 2 May 2013 Online at stacks.iop.org/PMB/58/3563

Effect of probabilistic planning

Role of Research IT

Dr. lan Hinder

Research IT role in this part of the project

- Research code used for a different system
 - → Migration,
 - → General clean up of external data structures,
 - → Integration using RayStation research environment
 - →Testing
- PhD student takes over and further develops PTP

Some details of the implementation

- Visual Studio C++ project
- Adapt existing PTP code to work with RayStation
- Add **ResearchInterface** for obtaining information from RayStation
- **Convert** ROIs, dose, etc. from RayStation to PTP code format

Some details of the implementation

- From **same source code**, build:
 - TestPTP.exe: **Command line** version of the code for testing outside RayStation using **simulated data** from **files**
 - PTPPlugin.dll: RayStation plugin
- Set systematic, random errors, etc through a textual "ini" file
- Output logging and intermediate calculations to files for debugging
- Results from each run can be stored separately:

Command Prompt

```
C:\Work> TestPTP.exe mytest.ini experiment004
TestPTP: Test tool for PTPPlugin
Setting systematic error to 0.1,0.1,0.1 from
mytest.ini
Writing output and logs to C:\Work\experiment004
Result of MinDose is: 0.00224
C:\Work>
```

Some details of the implementation

- We use Git (git-scm.com) to keep track of different versions and collaborate
- Regression tests: script to check results against known good results after changing the code
- Audit trail: version number of code (from Git) reported in log along with results
- Correctness testing:
 - Compare with RayStation example
 - Compare with analytic solution for ideal dose distribution

Conclude

- Did we 'get what we wanted' from our collaboration with Research IT?
 - Absolutely YES!
 - We even got some push to get our projects in version control (Git)

- Would you ask help from Research IT again?
 - Yes!